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such as the interaction between Pocillopora corals and

crab bodyguards (Stimson 1990, Pratchett 2001) also

exist.

Three hypotheses that have been offered to explain

this mutually beneficial interaction; we identify these as



We combined these analyses with stable isotope

methods to test the hypothesis that a portion of the

carbon in tending ants is derived from F. wislizeni and

that this carbon signature differs from other common

ants at our study site. Stable isotope ratios are expressed

in delta (d) notation, defined as parts per thousand

deviation from a standard materials (Pee Dee belemnite

limestone for C and atmospheric nitrogen for N). 13C

values are typically within 1% of food sources (DeNiro

and Epstein 1978). If tending ants are supported by F.

wislizeni-derived carbon to a greater degree than are

other co-occuring ant species, their signatures should be

more similar to the signature of F. wislizeni than are the

signatures of other ant species. We used a one-sided t

test to evaluate the hypothesis that the difference

between the d13C values of F. wislizeni and the three

tending ant species (C. opuntiae, S. aurea, and S. xyloni )

would be less than the differences between F. wislizeni

and the five locally abundant ant species rarely or never

observed on F. wislizeni.

We also used stable isotope methods to test the

hypothesis that the three ant species often observed

tending F. wislizeni occupy a different trophic level from

the herbivore N. pallidicornis. 15N values are often

enriched during a trophic transfer (e.g., as prey are

converted to predator tissue) by 3% (Minagawa and

Wada 1984), although the magnitude of that enrichment

can vary (McCutchan et al. 2003). If the three ant

species prey on N. pallidicornis, the d15N values should

progressively increase from F. wislizeni to N. pallidi-

cornis to the three ant species. We also provide d15N

values for the other ants included in this study because

that information may be valuable to subsequent

researchers. Those values, however, have no relevance

to our hypotheses, and 15N enrichment of particular

species, and hence their trophic position, cannot be

inferred solely from their d15N values in the absence of

information on more basal components of their

particular food chain (i.e., C. ocreatus should not be

classified an autotroph on the basis of similar d15N

values for that ant and F. wislizeni in Fig. 1).

Elemental content, d13C and d15N were measured on a

continuous-flow gas-ratio mass spectrometer (Finnigan

Delta PlusXL, Valencia, California, USA) coupled to an

elemental analyzer (Costech, Valencia, California, USA)

at the University of Arizona Department of Geoscienc-

es. Precision was better than 60.09% for d13C and 60.2

for d15N, based on repeated internal standards. Prior to

the analysis, the sample materials were dried for .48

hours in a drying oven, and approximately 2 mg of

sample materials were packed into tin capsules for

isotopic analysis. This mass could be obtained from

single individuals of the large-bodied ants Pogonomyr-

mex, Aphaenogaster, and Camponotus and the hemip-

teran Narnia, but required pooling multiple individuals

of the other, smaller ant species. Our descriptions of the

particular species were based on analysis of one sample

of A. cockerelli, T. hispidum, Camponotus laevigatus, and

C. ocreatus, four samples each of D. bicolor and S.

aurea, seven samples of Crematogaster opuntiae, nine

samples of N. pallidicornis and 12 samples of S. xyloni.

Although we collected distinct samples from plants

separated by .10–100 m, we refer to these units as

‘‘samples,’’ rather than ‘‘colonies,’’ because individual



in presentation between the bait types (e.g., surface area,

ant’s ability to manipulate or transport particular food,

and so on) should not influence our results. Neighboring

plants included Fouquieria splendens, Larrea tridentata,

Cercidium microphyllum, Acacia constricta, Opuntia

fulgida, O. phaecantha, Cereus giganteus, Ambrosia

deltoidea, O. versicolor, and Prosopis sp. (n ¼ 34, 21,



resource-addition treatments, we also added caterpillars

to control plants (n¼ 12) to verify that b values on these
plants were intermediate to the carbohydrate- and meat-

addition plants.
No significance should be ascribed to among-exper-

iment differences in b values. These two experiments
used different numbers of caterpillars (due to differences

in their availability), monitored ant responses for
different durations (due to varying availability of
caterpillars), and included different subsets of ant

attendants. The first trial was performed on plants
tended by C. opuntiae ants. The second trial was

performed on plants tended by either C. opuntiae or S.
xyloni, with all three treatments evenly allocated

between plants tended by those two ant species. The
identity of the tending ant did not change on any of the

plants during the duration of this study.

RESULTS

Carbon and nitrogen

The extrafloral nectar of F. wislizeni is nitrogen poor
(C:N¼ 204.5 6 20.5 [mean 6 SE], n¼ 4 plants) relative

to F. wislizeni plant tissue (49.6 6 10.9, n ¼ 4 plants),
Narnia pallidicornis (5.1 6 0.1, n ¼ 9 individuals)

collected on the plant, and the ants (4.7 6 0.1, n ¼ 8
species). Herbivores are compositionally more similar to

omnivorous ants than are plants or EFN (supporting
prediction 1).

d13C values for the cactus-tending ant species C.
opuntiae, S. aurea, and S. xyloni (as a group, 15.9% 6

0.5% [mean 6 SE]) were significantly closer to those of
F. wislizeni (EFN ¼ 12.3% 6 0.3%, tissue ¼ 13.1% 6

0.4%) and its herbivores than were those of the other
five other ant species (18.9% 6 0.7%) rarely observed

on F. wislizeni plants (one-sided t test, t¼2.83 df¼6, P¼
0.015; Fig. 1).

d15N values of C. opuntiae, S. aurea and S. xyloni were
higher than those of F. wislizeni herbivores. The

difference (3.49



minutes on carbohydrate-added plants than that on

protein-added plants (b ¼ 5.85 and 10.2, respectively),

and the maximum likelihood estimate of either b lay

outside of the 95% confidence interval of b for the other

treatment. Michaelis-Menten b values were intermediate

on control plants (with no resource added; Fig. 3B). In

both experiments, ant foragers dismembered the cater-





From the perspective of each partner, a successful

mutualism will maximize the ratio of benefits to costs

and be minimally susceptible to cheating. From a plant

perspective, the high C:N of EFN rewards may include

all of these characteristics. Carbon-rich defenses (direct

or indirect) should be less costly for plants to produce in

relatively N-limited habitats, where C is in excess

(Folgarait and Davidson 1994). EFN-bearing plants

are in fact common in sunlight-rich habitats such as rain

forest canopies (Blüthgen et al. 2000), forest edges

(Bentley 1976) and deserts (Pemberton 1988). Further,

allocating more nitrogen to those rewards (i.e., increas-

ing costs where nitrogen is more limiting than carbon)

may not improve the quality of service, and will perhaps

decrease it. In this case, natural selection may favor

sugary EFN, the least costly reward that can also be

highly effective. The likelihood and power of such

selection, however, will depend on the poorly under-

stood relative influences of genotype vs. environment on

nectar characteristics (e.g., production phenology, con-

centration, and composition) (Mitchell 2004). Last, our

results suggest that the consumption of carbohydrates

increases the incentives for omnivores to act as

carnivores. Collection of the reward inevitably engen-

ders responses favorable to the reward-producing plants,

and increases the mutualistic effect of perhaps otherwise

mediocre (i.e., less aggressive) partners.
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